Improving the Baltic Sea Management

Brainstorming Results

by

The AMBER PhD Students

Preamble

- The Baltic Sea ecosystem is undergoing significant climate and human induced changes
- The unpredictability of the recent climate induced ecosystem changes emphasizes the imperativeness of the precautionary principle

BSAP Segments

- Eutrophication
- Hazardous Substances
- Maritime Activities
- Biodiversity

Eutrophication

AMBER Results

- Impact of organic nitrogen is strongly underestimated
- Nitrogen related processes in the water column should be included in the nutrient cycle models
- Costal hypoxia reduces the natural nutrient removal capacity

Eutrophication

AMBER Results

- ground water:
 - Puck Bay:
 - phosphate loads via ground water are comparable with atmospheric deposition and riverine discharge
 - ammonium load is lower than atmospheric deposition but still significant
 - extrapolating the results from the Puck Bay might not be suitable

Eutrophication

Suggestions

- review farming habits e.g. reducing the amount of manure put on the fields, timing of fertilizing
- subsidise fuel effective ships and exhaust filters to reduce atmospheric deposition
- ground water reaching the sea should be protected and monitored
- use of catchment models to identify hot spots to make effective measure management plans

Eutrophication

Suggestions

- ground water monitoring stations along the coasts are necessary
- reduce EU subsidising for meat industry
- support for presicion farming
- support of small farms
- recyling of N and P that is in the system by enhancing waste water treatment,
- restrict import of N and P into the Baltic Sea catchment

Hazardous Substances

AMBER Results

 Ground water may contain hazardous substances (BPA, hormones, antibiotics etc.)

Suggestions

monitoring of hazardous substances in ground water necessary

Biodiversity

AMBER Results

- climate change will impose further stress on ecosytem
- higher runoff will cause lower salinity which causes shifts in ecosystem community

Suggestions

 reduce further stress through human impact by further reducing nutrients